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ON A MEASURE OF THE CLOSENESS OF NEUTRAL SYSTEMS TO INTERNAL RESONANCE* 

YA.M. GOL'TSER 

For certain classes of parametrically perturbed resonance systems that 
are neutral in a linear approximation, a quantitative characteristic is 
introduced for the closeness of the system of resonance: the magnitude of 
the critical detuning value for resonance 8* at which the change in 
stability occurs as the system withdraws from resonance. The problem of 
finding this critical value is made complicated by the non-linear nature 
of the change in stability in neutral systems. It is solved below for 
third-order resonances in a situation that guarantees the passage of 
instability into asymptotic stability as the system withdraws from 
resonance. 

Knowledge of the quantity 6. enables the strong instability domain 
/l, 2/ in parameter space to be estimated, enables the danger of 
resonance to be characterized, and enables the structural parameter in 
the system, the shift of the resonance phases, to be clarified, whose 
variation would enable the danger of resonance to be increased or reduced. 

1. Formulation of the problem. Fundamental assutnptions. In the Z-dimensional 
real space R' we consider the system of differential equations that depends continuously on 
the parameter FED 

where D C_Rd is a certain closed d-dimensional domain containing the origin, and F(J) are 
L-dimensional vector forms of j-th order whose coefficients are almost periodic functions of 

t uniformly in p E D. 
Let the matrix A(p) have n pairs of different purely imaginary eigenvalues fivs(P),s= 1, 

* . *, n in D while the remaining eigenvalues have negative real parts in D. 
Retaining the definitions from /3/, we consider (1.1) to be an F-system and there is a 

k-th -order resonance therein for p=O (m,>O are integers): 

h=<m, v (0)) E N*Ik, na= fm,, . . . . 4, k=Itif=ml+...+~. 0.8 

The concepts of the F-system and the set g,lk are described in detail in /3/. We recall 
that the continuous normal form of F-systems is reducible to autonomous form while Not* is 
contained in the minimum modulus generated by the spectrum of the non-linearity coefficients. 

We will confine ourselves to studying a purely critical system when l=2n. The case 
1>2n reduces to it by using the reduction principle /4/. 

0% * 
In addition to the initial parameters it is convenient to introduce the parameters err 
. tr %)and the resonance detuning 6 by setting 

a6 (I*) = Ire (~1 - va IO), 6 @L) = <m, s (CL)> 

The equation 8~0 defines a certain k-resonance surface I'k in D. 
The k-resonance surface is mapped into a k-resonance plane II,: <m,e(p)>=O in the 



space of the parameters E. The quantity (6 1 characterizes the distance to the plane H,.. We 
shall henceforth consider that the vector p has the dimensionality d> n and the image of 

the mapping s(rk) is a certain neighbourhood of zero in the subspace defined by the plane IIh-. 

Condition R. There are no q-resonance planes with q<k f 1 different from II, in 

a-space. 

Later assumptions substantially utilize the continuous and ordinary normal form of the 

F-systems /3/. Let us execute a continuous normalization of the F-system (1.1) in D. Writing 
explicitly the smallest terms of the internal and identity resonances, we obtain 

(1.3) 

N= Ik’21, S= 1, 2, . . .( n, 0 = (01, . . .( 0,) ~8 = 1 US [ ‘, gp --- w~PI. . . 0~ (8, is the direction 

in R"). The substitution ns~~,exp(iv,(O)t) transfers (1.3) into a system autonomous to the 
(2N + 2)-th order. 

v,'=ie,v, f tl,v -m-6, + v/&a(pJ'O~ + O( Ilull""'") (1.4) 

We now consider the domain D* which is obtained by removal of the k-resonance surface 

rk from D. The ordinary normal form of the F-system (1.1) in D* will not contain internal 
resonance terms. It can be obtained by annihilating these terms in (1.4). The necessary 
transformation has the form 

v, = us* + ic&l~*m-bs (1.5) 
which takes (1.4) over into the system 

‘* . 
us = W,* -t- U,* ,& a_$?*~*~ + 0 ( 11 u* II”X+“) (1.6) 

It is seen from (1.5) that certain coefficients of the non-linear terms in (1.6) that 

depend on 6-r increase without limit as the system approaches the resonance surface (6 * 0). 
It can be established that there already are such coefficients to the (2k- 3)-th order. 
For k= 3 they already are manifest to third order. Hence, the problem under consideration 
has a singularity for k> 3. 

We will confine ourselves to studying the case k= 3. Systems (1.4) and (1.6) take the 

form 

n 

U,’ = iep, + U,,Pbs + V, 2 CZ,/!Jj + 0 ( jl V II’) 
j=l 

n 
‘* 

v, = ze,u,* + us* X asj*mj* + O ( II u* II”) 
j=l 

(1.7) 

(l-8) 

The interrelation between the coefficients of both normal forms, which has been set up 
using (1.5), plays a substantial part in the analysis. Omitting calculations, we present 

values of n,m,h,6 and the connection formulas for each kind of third-order resonance. 

One-frequency resonance 

n = 1, m = 3, a = 3~~ (0), 6 = 3~1, a~* = au - 

is-'a,EI 
WV 

(1.10) 
Two-frequency resonance 

n = 2, m = (1, 2), h = y1 (0) + 2~~ (0), 6 = c1 + 2e, 

all* = all, ala* = ala - 2i8%&2 
aal* = a21 - ifS-la&, aal*xaaa - @'a& 

Three-frequency resonance 

n = 3, m = (1, 1, I), h = v1 (0) + Ye (0) + yg (0) 

6 = e1 + Ea + Eat a,.* = ass 

aJj* = aSj - &'a a s-7, i, s, r= 1, 2, 3, i # s# r (1.11) 

We consider the F-system (1.1). If 6=0, then the system is strictly resonant. As 16 
increases system (1.1) converges with the resonance surface. For a sufficiently broad class 

of systems, as 16 I grows it is possible for a time to appear such that for 6=6* a change 

in stability first occurs. We call 6* the critical value of resonance detuning. We will 
introduce additional assumptions for which the problem of determining 6* will be solved. 

I 

Condition N. The F-system (1.1) is unstable in a second approximation on the resonance 

surface r3 (6= 0). 
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Condition U. The F-system (1.1) is asymptotically stable for 6=00 (far from resonance 
and for VIED. 

Both these conditions ensure the presence of the needed situation: the passage of the 
instability into asymptotic instability (H-AY) as 16 1 increases (we do not consider the 
passage AY-+H here). The results obtained in /5/ enable us to write the conditions N 
and U in the language of the normal form coefficients in each of the cases of one-, two-, and 
three-frequency resonance. 

Remark. Condition U means that if the internal resonance terms are deleted in the 
continuous normal form, then what remains in the system will be asymptotically stable in D. 
Indeed, by setting 6-'=O, it is seen form Eqs.(l.9)-(1.11) connecting both types of normaliza- 
tion that then arjf = a,j. 

2. One-frequency resonance. From an examination of (1.7) on rs it follows that 
system (1.1) is unstable for %#O* This fact is established exactly as in the periodic 
case /6/. Condition N reduces to the requirement a,#O, VIE ra. 

Furthermore, considering (1.8), we establish that condition U reduces to the requirement 
Rea,,<0,Vp~D. It is seen from (1.9) that Rea,,*=-. Rea,,. This equality shows that when 
the condition a,# 0, Re a,,( 0 are satisfied, the critical value of resonance detuning is 
P = 0. In other words, the influence of one-frequency resonance is weak: it does not alter 
the asymptotic stability property in any proximity to resonance by making the system unstable 
only for strict resonance. 

3. Two-frequency resonance (the general case). We consider the system (1.7) and 
we introduce the notation A = Im ~+&,a,~ = Re aal, a,j* = Re ailfL u = a,, -I- ZU,,, A = u11u28- 

w-b. We will assume the conditions of the general case to be satisfied /2/: 

a,,# 0, s # 0, A # 0 (VpE r,) 

Making conditions N and V specific. We consider system (1.7) on rs. In the general case 
condition N is satisfied automatically: A #O. Indeed, for A #O system (1.7) is unstable 

VILEST (see Theorem 2.1 in /2/j. 
We consider system (1.8) for the formulation of the condition U. In conformity with 

Theorem 2.2 in /2/, for its asymptotic stability it is necessary and sufficient that there 
exist such yl,yz> 0 that the quadratic form 

y1Ql*42 + (Ylala* + Yzual*)ol*oa* + Jw*a*d2 

is negative-definite in the cone on8*> 0. For this, in turn, it is necessary and sufficient 
that one of the following two groups of conditions be satisfied: 

a*: 1) a,,< 0; 2) a,, - A&’ < 0; 3) a,, + 2AS-' < 0 or a,, < 0; fJ*: 1) a,, < 0; 2) aSa - AS-l ( 0; 
3) the third condition a* is violated but A > aA&‘. 
If the ratio Ah-’ is neglected, we obtain the condition U which requires satisfaction 

of one of the following groups of conditions: 

a: 1) a,,< 0; 2) a,,< 0; 3) al, < 0 or a,,< 0; 
B: 1) a,,< 0; 2) a,,< 0; 3) a,, > 0, a,, > 0, A > 0 

Formulation of the result. To find s* four logically possible cases are examined that 
are related to the satisfaction of one of the conditions a or b for a fixed sign of the 
quantity A6. The values found for 6*#0 that include all cases of the transition H-+AY 
as 16 1 increases are represented in Table 1. 

Table 1 

1’ 

a 20 
A&<0 I6*I=IAa,‘l 

A6>0, a~>% a>0 
30 a)A&<O,o>O 

ILt*I=min {2lAja,'. aAiP) 

p 40 
[6*I= IAa;'I 

18*1=1bAA-'I 

In all the remaining cases of satisfying conditions a or fi that are not included in 
Table 1, d'=O. In these cases A6>0 always. System (1.1) behaves as follows: the 
asymptotic stability for A6>0 is replaced by instability for 6x0, which is conserved 
for Ah<0 until 16 I< lb* I, where 6* (for A&(O) can be determined from the appropriate 
line in Table 1. 

Finding &*. If the conditions a(p) are satisfied, then for sufficiently large 16 ) the 
condition a* (fi*) are satisfied and system (1.1) is asymptotically stable far from resonance 
for finite values of 6. As IS I diminishes, the instability occurs for those values of 6 
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when at least one of the inequalities in conditions a* or p* is violated. As is seen from 
(l.lO), as 6 changes only the second and third inequalities in conditions a* and @* can be 

spoiled. Finding 6* requires the determination of the least values of 16 1 for which at least 
one of these inequalities is first violated. 

It is convenient to perform the analysis in the following four cases: 1". a and A6<0; 
2". a and A6> 0; 3”. f3 and A6 < 0; 4”. fi and A6 > 0. 

We present it just for the case 3O (the analysis is analogous in the remaining cases). 
Thus, let the condition p be satisfied and A6<0. AsI 6' Idiminishes the instability 

can occur only because of violation of the second and third conditions of p*. The second 

condition of p* is violated for IS I< IS,Is jAa,,-’ I.Let us analyse the third condition in fi*. 
Violation of the inequality Ur2 _t 2A6-‘>O before the second inequality of fi* takes the 

conditions p* over into the conditions a* and for such 16 I> 16, I the system remains 
asymptotically stable. When the second condition of /3* is satisfied instability can set in 

only for those 6 for which the following inequalities are simultaneously true: 

aI2 + 2A6-’ > 0, A < oA6-1 (3.1) 
Taking into account that aI2 > O,db< 0, A > 0, we see that system (3.1) is common just 

for 

o< 0, UlP > 2 I %2 I (3.") 

and the system of inequalities (3.1) can be rewritten in the form 

( 6, I E 2 1 A I a Q < I 6 I< I aA 1 A-' G 6, (3.3) 

Comparing 161 lwith I&j and [6,[ we see that the inequality 16, I( ItSI I( 16,I in conditions 

(3.2) is true. It hence follows that we have 16* 1 = 16, j for the satisfaction of conditions 
(3.2) and 16* I== (& 1 for the violation of these conditions (cases a), b), c) in Table 1). 

4. Three-frequency resonance (general cases). We consider system (1.7) for n = 3. 
We again use the notation a,, = Rea,, and, moreover, we set C8j = Im a&, sf j # k. We note 
that cS~ = -Chj. For brevity, we use the notation cl3 = a, car = p, cl2 = y. 

From (1.11) for a,j* = Rea,j* we obtain 

&*=a SSI a,~j*=",j+Csj~-l~ Svir192f3* S#j (4.1) 

To study system (1.11) in D* we use Molchanov's theorem /7/ as itapplies to system (1.8). 

For this, we write the model system corresponding to (1.8) in the variables o,*: 

1 
T6&'*=0,* 

f= 
a,l*oi* (4.2) 

j=1 

The system "far from resonance" is the following 

For (4.2) we introduce the matrix A* = (a,,*), the j-th principal minors Al* (j = 1, 2, 3) 
and their determinants A*, A)*. The notation A,A,, A,A, for system (4.3) has analogous 

meanings. By using (4.1) the determinants A*r Al* can be written in the form 

A* = A + Lfi-’ + A,&-" (4.4) 
A,* =Aj - (usFc,, -1 arac,,)6-1- c.,c$~, j# sf r 

where All is the minor of the element Usj of the matrix A. 

The following conditions separate out the fundamental case /2/, which we will indeed 

study: 

=jl# 0, a, IX Y# 0, A, A07 Ai#O, i = I,& 3 (VIED) (4.5) 

Making the conditions N and U specific. We consider system (1.7) for P~ZI'~. Applying 
Theorem 3.1 from /2/, we ensure satisfaction of the condition N by the requirement that the 
following equalities be violated: 

sign a = sign p = sign y (4.6) 

We now present condition U. In conformity with the Molchanov's theorem, these conditions 

are reduced to ensuring that there are no neutral and unstable rays in the cone K = {Oj* > 0) 
in system (4.3). Conditions (4.5) ensure the absence of neutral rays. The absence of unstable 

rays will be ensured by seven groups of conditions B,,Cj,E(j = 1,2,3). Each group is a 

condition for no unstable rays in all the one-dimensional and two-dimensional faces of the 
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cone K and within the cone K. Algebraically this means that the set of seven systems 

ajjqj = 1, j = 1, 2, 3 (4.7j) 
Ajqu) = Z(j), W = (1, I), q(j) = (ql, q,), s < r, S, r # j (4.W 
Aq = Z, Z = (1, 1, I), q = (41, qz, 43) (4.9) 

has no strictly positive solution. The asymptotic stability conditions (condition U) are 
thereby the following: 

Bj: ajj<O, j=i,2,3 
Cj: (3 s # j) (Aj@)Aj < 0), s, j = 1, 2, 3 
E: (3s) (A( < 0), s = 1, 2, 3 

where Aj@),A(*) are obtained from A,, A by replacing the s-th column by Z(j), 1. 
Asymptotic stability conditions for system (4.2) are formulated analogously. They are 

obtained by replacing all the determinants in conditions Cj and E by A*, AI*, A*@), A)*(@. The 
conditions obtained for (4.2) will be denoted by Bj,Cj*,E* (conditions Bj do not change) 
We denote the corresponding systems of algebraic equations by (4.8,*),(4.9*). The expressions 
for A,*(@ A*(.9 are the following 

A*@'=A(') + LJ-1 _ 3~~~cJj-2, AT@) = A:) - c,,&1 

L = C,, (2U,j - a,j - Ujj) + C8 j @a*’ as, - a~), 

(4.10) 
s#i#r 

Finding 6*. We introduce the sets H$ = {S 2.0 1 A*(')A* > 0, s == 1, 2, 3}, H,* = {S 2 0 1 Aq*(*) 
&*>O,s# q), q = 1,2,3 and their exact boundaries mif = inf Hi*‘, A4i* = SUP Hi*, i = 0, 1, 
2, 3. 

For 6~ [j H,* the system is unstable. From conditions U it follows that all non- 
i=o 

empty sets Ifi+ have upper bounds (Ml+< + cc), and Hi- lower bounds (mi-> - 00). Everywhere 
below s, q, j, r = 1, 2, 3, q # j # r, i = 0, 1, 2, 3. 

Assertion 1. If H,+(H,)# c?J, then for any combination of signs CC,~,Y different 
from (4.6) m,+> 0 (MO-< 0). 

Indeed, let 6>0 and Ho++@, to be specific. We see that m,+>O. 
to be sufficiently small, we obtain sign A*@)= --sigtlc,Vc,j from (4.4). 

Considering 6>0 
We see by direct sub- 

stitution that when conditions (4.6) are violated there are a number of different signs among 
the . A*@) Therefore, for sufficiently small 8 the condition E' is true. But then inf Ho+> 0. 
The assertion is proved in the case when 6>0. The case when 6~0 is considered analogously. 

The validity of the following assertion can be seen by direct substitution. 

Assertion 2. Near resonance, for any combination of signs a, fi,r different from (4.6) 
and for any 6,a unique system (4.8j*) exists for which the condition Cj*is violated. 

Table 2 enables this system to be determined (enables the value of j to be found) from 
the known signs of the numbers cc, p,r,s. 

Table 2 

.M j i* 1 2* 1 3f ( 41 ( 5f 1 6f 

Here the superscipt (plus or minus) corresponds to the sign of 8. 

Example. In system (l-l), 01, /3, v, S>O (I+). 
Condition C3* is violated. 

Only system (4.8,*) has a positive solution. 

To find 8* we determine the number j from Table 2 for fixed We use the 
notation I* = (6 2 0) 

a, B, y, 6. 
and we introduce the sets N$ = H,,* LI H.,* U H$, A* = I* \ (Nj* U Hj*). 

The sets A+, A- are strictly separated from zero, as follows from Assertions 1 and 2, and 
it is clear by construction that fi* =inf A+ for S> 0 and a*= supA_ for 6<0. 

It is seen from (4.4) and (4.10) that all the non-empty sets H,* and A* are either 
intervals or a combination of a finite number of them. 
(by confining ourselves to the case 6 > 0). 

We make the value of d* specific 
If Mj+ < min (m,+, mp+, m,.+) or Mjc > max {MO+, 

M,+, M,+}, then 6* = Mj+. If both inequalities are violated and N,+ is an interval, then 
6* = max {M,+). If NjC is the union of several non-intersecting intervals, then several 
(not less than three) transitions hold of the type H+-AY, AY+H as 16 1 grows. The last 
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replacement of stability must have the form H-tftY, which is ensured by theconditions U. 
ileterminationsf the numbers M,*,mi* reduces to solvi~glinear~ndquadraticinequa~it~es 

in 8 f and it is not convenient to do this in general form. 
As an illustration we present just the values of Mj+ in the case 1+. In this case j=3 

and it is necessary to take account of(4.4) and (4.10) in the solution of the system of 
inequalities 

System (4.11) should be solved in six subcases corresponding to the conditions Ca 
achieving the signs 6%. A,('), AL3,@). The list of these cases and the corresponding values of Msi 
are given in Table 3. 

Table 3 

Here 

In cases i,+ -ifi, always Q > 0. 

5, Behaviour of the critical value of resonance detuning. "Danger" of 
resonance. Tbe quantity 8* can be considered as a quantitative characteristic of the danger 
of resonance, The greaterthe I&* I,-the stronger the influence of resonance on non-resonant 
systems, and the later the resonance instability is replaced by asymptotic stability. Safe 
resonance corresponds to cases when fl* ==O. It is seen from Sect.2 that one-frequency 
resonance is safe. 

Let us write the resonance coefficients a, in the form 

cr8 = s8 + zba, sin ma = ---a8 1 as i-l, cos tpa - b, ]a, 1-l WI 

Formulas (5.1) introduce the auxiliary angles cpsrthe resonance phases. These angles 
determine the difference cps - tpj, the shift of the resonance phases, and are the structural 
parameters, by regulating which any value can be obtained for 6* to increase or diminish the 
danger of resanance. 

Two-frequency resonance. It is seen from Table 1 that the value of 6* is directly 
proportional to the number]A f,which has the following form according to 15.1) 

IAI = 1 Im a& ] = [CQU~ Isin Arp, Aq, = 'pl- (~~11 (5.2) 

It is seen from (5.2) that as Aq-+O,n we have P-+-O and resonance becomes safe. 
The most dangerous resonance corresponds to the value Arp== zkd2 for A 20. 

Three-frequency resonance. Introducing the resonance phases cp~, we obtain 

a = I alap 1 sin (9% - (P& B = Iash Isin (cpa - ftbh y = 
1 am I sin (rpl - CPA 

(5.31 

We identify the angles rpd with points of the unit circle. Condition N means fl/ that 
A~I~~~J~ is obtuse-angled or degenerate (at a point or chord not coincident with the diameter). 

AS mps changes so that Avrcp,cp, degenerates to a point of diameter, the resonance phase 
shifts tend to 0 or n, and then it is seen from (5~3) that a, fl,rh 0, By using (4.4) and 
(4.10) it can be seen that if a, p,y-tO, then &*-to. Consequently, the condition of 
degeneracy of Amprp%rpa is the safety condition for resonance. 

Remark. As is seen from Table 3, in certain cases P-0 if only one or two paraemters 
fromthetriplet a&y tend to zero. In this case the safety condition for resonance can 
include the case of'degeneration of a triangle into a chord and a right triangle. 

The above discussion shows that in both cases considered \es\ and the resonance phase 
shifts are structural parameters permitting the achievement that S* be a previously assigned 
number. 'Ibat the resonance be safe can be achieved by selecting just the resonance phase 
shift. 



737 

6. Example. We consider the system of equation (n= 2) 

a#"+ v,'(p) Z& = Zf)(p, r,z')+ z!"' (&Z, 2') + . . . 

Following /2/ we write the forms Z,(2),Z11(3) in the form 

Z$Z'= i a&h+ $J 1 h' b I z .f c!% ‘Z ’ z(3) = 
j. h=l 

ahjh’ s 

j, h$,zl a(jdj.f,~,,~~ + b$kzfh=k’ + c$pjz;t; + dj&z j’~h*~E* 

(6.1) 

After substituting zs = zs - iv,%,' we obtain the following system in place in (6.1): 

zI.= iv8 (P)z6+ X~)(z,z,P) + Xp)(z,~,~)+ . . . 
The real parts of the coefficients of the forms X, (')(Xg(')) are formed from the coefficients 

of the first group of terms: z,q,’ (z,z,,z~‘, Zj’Z,f’Zk’) and the imaginary parts from the coefficients 
of the second group of terms: z,z,,, z,'z,,' (s,zhzx. aiz,,'zr'). 

Let there be resonance ~(0)+2~~(0) in system (6.1). To satisfy condition N it is 
necessary that there be terms of both groups to second order in both equations of (6.1). In 
particular, it is sufficient that azau), b,,(‘), bnl@). clp@) # 0. We present below the result of a 
calculation of the coefficients of a continuous normal form under the assumption that all the 
coefficients to second order, except those mentioned, are zero: 

aa = - + (b$z + ‘a$;)), 
1 

ai = z (- b$vt + ic$~vz) (3.2) 

1 
(111 = 7 (b$;), + 3d$11), q1 = f (- bg; + d$&‘) + 

m 
8Vl (VI - v2) ’ a21 = + (b$ + d$~~) 

1 
(122 = 7 (b$ + 3d$Q) + ,3,,, (,,;_ 2,,a) , m = .!$b$ - vtb$\f 

It is seen from the expression for asj that conditions cc or f~ can be satisfied for system 
(6.1). For instance, if 

b;;;,&, bg,),<O, d:;), = d$ = d$; = 0 

then for all values LED the condition OL is satisfied (for v,>O,v,<O). 
Under the conditions mentioned, we will have for A6<0 (the first line of Table 1): 

I8*l=IAa;;;‘l, 4=v,(a~~b~~+b~c,, (1) (a,,) 

By using (6.2) we obtain for the resonance phase shift 

AT = arcsin (bk)c$)vip + a$)b$I CLI(X~ 1-l 

For A&O the equality Aq=+n/Z yields the conditions for which resonance is most 
dangerous. 

The author is grateful to V.V. Rumyantsev for his interest. 
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